Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 20 a + 12 + \left(19 a + 4\right)\cdot 31 + \left(28 a + 14\right)\cdot 31^{2} + \left(30 a + 30\right)\cdot 31^{3} + \left(8 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 a + 21 + \left(11 a + 23\right)\cdot 31 + \left(2 a + 20\right)\cdot 31^{2} + 31^{3} + \left(22 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 a + 30 + \left(14 a + 16\right)\cdot 31 + \left(13 a + 12\right)\cdot 31^{2} + 27\cdot 31^{3} + \left(12 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 a + 20 + \left(21 a + 8\right)\cdot 31 + \left(15 a + 5\right)\cdot 31^{2} + 31^{3} + \left(8 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 a + 15 + \left(16 a + 6\right)\cdot 31 + \left(17 a + 25\right)\cdot 31^{2} + \left(30 a + 14\right)\cdot 31^{3} + \left(18 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 a + 27 + \left(9 a + 1\right)\cdot 31 + \left(15 a + 15\right)\cdot 31^{2} + \left(30 a + 17\right)\cdot 31^{3} + \left(22 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $10$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $-2$ |
| $15$ | $2$ | $(1,2)$ | $2$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $1$ |
| $40$ | $3$ | $(1,2,3)$ | $1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)$ | $0$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.