Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 82 a + 7 + \left(41 a + 33\right)\cdot 109 + \left(70 a + 36\right)\cdot 109^{2} + \left(13 a + 104\right)\cdot 109^{3} + \left(76 a + 97\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 80 a + 41 + \left(101 a + 78\right)\cdot 109 + \left(21 a + 102\right)\cdot 109^{2} + \left(89 a + 5\right)\cdot 109^{3} + \left(97 a + 35\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 a + 12 + \left(7 a + 100\right)\cdot 109 + \left(87 a + 22\right)\cdot 109^{2} + \left(19 a + 73\right)\cdot 109^{3} + \left(11 a + 43\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 a + 89 + \left(67 a + 101\right)\cdot 109 + \left(38 a + 64\right)\cdot 109^{2} + \left(95 a + 47\right)\cdot 109^{3} + \left(32 a + 51\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 21 + 102\cdot 109 + 63\cdot 109^{2} + 60\cdot 109^{3} + 60\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 50 + 20\cdot 109 + 36\cdot 109^{2} + 35\cdot 109^{3} + 38\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$10$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $15$ |
$2$ |
$(1,2)$ |
$2$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.