Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 29 a + 24 + \left(17 a + 18\right)\cdot 43 + \left(24 a + 16\right)\cdot 43^{2} + \left(6 a + 15\right)\cdot 43^{3} + \left(37 a + 24\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 31 a + 13 + \left(6 a + 7\right)\cdot 43 + \left(25 a + 26\right)\cdot 43^{2} + \left(12 a + 18\right)\cdot 43^{3} + \left(14 a + 3\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 1 + \left(36 a + 26\right)\cdot 43 + \left(17 a + 1\right)\cdot 43^{2} + \left(30 a + 6\right)\cdot 43^{3} + \left(28 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 26 + 23\cdot 43 + 36\cdot 43^{2} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 14 a + 10 + \left(25 a + 7\right)\cdot 43 + \left(18 a + 23\right)\cdot 43^{2} + \left(36 a + 40\right)\cdot 43^{3} + \left(5 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 13 + 3\cdot 43 + 25\cdot 43^{2} + 4\cdot 43^{3} + 12\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $10$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $-2$ |
| $15$ | $2$ | $(1,2)$ | $2$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $1$ |
| $40$ | $3$ | $(1,2,3)$ | $1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)$ | $0$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.