Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 33 + 34\cdot 67 + 14\cdot 67^{2} + 25\cdot 67^{3} + 12\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 26 a + 1 + \left(32 a + 56\right)\cdot 67 + \left(62 a + 10\right)\cdot 67^{2} + \left(50 a + 52\right)\cdot 67^{3} + \left(32 a + 5\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 31 + 43\cdot 67 + 33\cdot 67^{2} + 42\cdot 67^{3} + 36\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 41 a + 38 + \left(34 a + 25\right)\cdot 67 + \left(4 a + 27\right)\cdot 67^{2} + \left(16 a + 59\right)\cdot 67^{3} + \left(34 a + 18\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 11 + 20\cdot 67 + 8\cdot 67^{3} + 51\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 21 + 21\cdot 67 + 47\cdot 67^{2} + 13\cdot 67^{3} + 9\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$10$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$2$ |
| $15$ |
$2$ |
$(1,2)$ |
$-2$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$-1$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.