Properties

Label 10.41e4_64921e4.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 41^{4} \cdot 64921^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$50196822872089930773296641= 41^{4} \cdot 64921^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 3 x^{3} + 9 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 33 + 34\cdot 67 + 14\cdot 67^{2} + 25\cdot 67^{3} + 12\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 a + 1 + \left(32 a + 56\right)\cdot 67 + \left(62 a + 10\right)\cdot 67^{2} + \left(50 a + 52\right)\cdot 67^{3} + \left(32 a + 5\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 43\cdot 67 + 33\cdot 67^{2} + 42\cdot 67^{3} + 36\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 a + 38 + \left(34 a + 25\right)\cdot 67 + \left(4 a + 27\right)\cdot 67^{2} + \left(16 a + 59\right)\cdot 67^{3} + \left(34 a + 18\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 + 20\cdot 67 + 8\cdot 67^{3} + 51\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 + 21\cdot 67 + 47\cdot 67^{2} + 13\cdot 67^{3} + 9\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$-2$
$15$$2$$(1,2)$$2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.