Properties

Label 10.3e4_855143e4.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 3^{4} \cdot 855143^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$43315167588524487044229681= 3^{4} \cdot 855143^{4} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - x^{3} + 8 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 47 a + 29 + \left(46 a + 45\right)\cdot 53 + \left(25 a + 51\right)\cdot 53^{2} + \left(40 a + 5\right)\cdot 53^{3} + \left(13 a + 1\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 34 + \left(30 a + 47\right)\cdot 53 + \left(25 a + 38\right)\cdot 53^{2} + \left(40 a + 44\right)\cdot 53^{3} + \left(19 a + 43\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 28 + \left(22 a + 38\right)\cdot 53 + \left(27 a + 4\right)\cdot 53^{2} + \left(12 a + 22\right)\cdot 53^{3} + \left(33 a + 29\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 5 + \left(6 a + 27\right)\cdot 53 + \left(27 a + 2\right)\cdot 53^{2} + \left(12 a + 36\right)\cdot 53^{3} + \left(39 a + 15\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 + 35\cdot 53 + 46\cdot 53^{2} + 35\cdot 53^{3} + 3\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 + 17\cdot 53 + 14\cdot 53^{2} + 14\cdot 53^{3} + 12\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$-2$
$15$$2$$(1,2)$$2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.