Properties

Label 10.3e4_7993e6.30t176.1
Dimension 10
Group $S_6$
Conductor $ 3^{4} \cdot 7993^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$21122430835048716423913569= 3^{4} \cdot 7993^{6} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} - 2 x^{3} + x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 197 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 197 }$: $ x^{2} + 192 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 120 a + 144 + \left(128 a + 120\right)\cdot 197 + \left(69 a + 168\right)\cdot 197^{2} + \left(190 a + 107\right)\cdot 197^{3} + \left(32 a + 172\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 142 + 13\cdot 197 + 150\cdot 197^{2} + 8\cdot 197^{3} + 167\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 106 + 75\cdot 197 + 62\cdot 197^{2} + 194\cdot 197^{3} + 194\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 52 + \left(196 a + 180\right)\cdot 197 + \left(143 a + 42\right)\cdot 197^{2} + \left(91 a + 177\right)\cdot 197^{3} + \left(45 a + 83\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 169 a + 192 + 147\cdot 197 + \left(53 a + 172\right)\cdot 197^{2} + \left(105 a + 97\right)\cdot 197^{3} + \left(151 a + 22\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 77 a + 153 + \left(68 a + 52\right)\cdot 197 + \left(127 a + 191\right)\cdot 197^{2} + \left(6 a + 4\right)\cdot 197^{3} + \left(164 a + 147\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$15$ $2$ $(1,2)(3,4)(5,6)$ $2$
$15$ $2$ $(1,2)$ $-2$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.