Properties

Label 10.3e20_13e6.30t88.2c1
Dimension 10
Group $A_6$
Conductor $ 3^{20} \cdot 13^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$A_6$
Conductor:$16830042327806409= 3^{20} \cdot 13^{6} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} - x^{3} - 117 x + 195 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 151 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 151 }$: $ x^{2} + 149 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 35 a + 17 + \left(114 a + 46\right)\cdot 151 + \left(90 a + 39\right)\cdot 151^{2} + \left(95 a + 93\right)\cdot 151^{3} + \left(16 a + 119\right)\cdot 151^{4} + \left(91 a + 62\right)\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 101 + \left(116 a + 42\right)\cdot 151 + \left(132 a + 12\right)\cdot 151^{2} + \left(43 a + 142\right)\cdot 151^{3} + \left(57 a + 140\right)\cdot 151^{4} + \left(124 a + 131\right)\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 116 a + 87 + \left(36 a + 88\right)\cdot 151 + \left(60 a + 106\right)\cdot 151^{2} + \left(55 a + 42\right)\cdot 151^{3} + \left(134 a + 57\right)\cdot 151^{4} + \left(59 a + 77\right)\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 68 + 73\cdot 151 + 98\cdot 151^{2} + 93\cdot 151^{3} + 115\cdot 151^{4} + 118\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 145 a + 113 + \left(34 a + 117\right)\cdot 151 + \left(18 a + 10\right)\cdot 151^{2} + \left(107 a + 97\right)\cdot 151^{3} + \left(93 a + 60\right)\cdot 151^{4} + \left(26 a + 21\right)\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 70 + 84\cdot 151 + 34\cdot 151^{2} + 135\cdot 151^{3} + 109\cdot 151^{4} + 40\cdot 151^{5} +O\left(151^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$0$
$72$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.