Properties

Label 10.3e18_5e16.30t88.2
Dimension 10
Group $A_6$
Conductor $ 3^{18} \cdot 5^{16}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$A_6$
Conductor:$59115675201416015625= 3^{18} \cdot 5^{16} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 15 x^{4} - 25 x^{3} - 75 x^{2} - 156 x + 703 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 47\cdot 79 + 57\cdot 79^{2} + 67\cdot 79^{3} + 72\cdot 79^{4} + 5\cdot 79^{5} + 58\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 13 + \left(5 a + 19\right)\cdot 79 + \left(75 a + 61\right)\cdot 79^{2} + \left(36 a + 34\right)\cdot 79^{3} + 59\cdot 79^{4} + \left(54 a + 3\right)\cdot 79^{5} + \left(12 a + 46\right)\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 71 a + 21 + \left(73 a + 16\right)\cdot 79 + \left(3 a + 52\right)\cdot 79^{2} + \left(42 a + 75\right)\cdot 79^{3} + \left(78 a + 22\right)\cdot 79^{4} + \left(24 a + 57\right)\cdot 79^{5} + \left(66 a + 4\right)\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 23 + \left(28 a + 48\right)\cdot 79 + \left(68 a + 66\right)\cdot 79^{2} + \left(29 a + 75\right)\cdot 79^{3} + \left(33 a + 76\right)\cdot 79^{4} + \left(56 a + 78\right)\cdot 79^{5} + \left(68 a + 56\right)\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 68 + \left(50 a + 31\right)\cdot 79 + \left(10 a + 27\right)\cdot 79^{2} + \left(49 a + 37\right)\cdot 79^{3} + \left(45 a + 1\right)\cdot 79^{4} + \left(22 a + 23\right)\cdot 79^{5} + \left(10 a + 69\right)\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 11 + 74\cdot 79 + 50\cdot 79^{2} + 24\cdot 79^{3} + 3\cdot 79^{4} + 68\cdot 79^{5} + 79^{6} +O\left(79^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$72$ $5$ $(1,2,3,4,5)$ $0$
$72$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.