Properties

Label 10.3e14_5e6_7e6.30t88.1
Dimension 10
Group $A_6$
Conductor $ 3^{14} \cdot 5^{6} \cdot 7^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$A_6$
Conductor:$8792367498140625= 3^{14} \cdot 5^{6} \cdot 7^{6} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 7 x^{3} - 9 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 12 + \left(25 a + 15\right)\cdot 31 + \left(23 a + 5\right)\cdot 31^{2} + \left(20 a + 29\right)\cdot 31^{3} + \left(12 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 20\cdot 31 + 4\cdot 31^{2} + 22\cdot 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 27 + \left(5 a + 12\right)\cdot 31 + \left(7 a + 27\right)\cdot 31^{2} + \left(10 a + 15\right)\cdot 31^{3} + \left(18 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 20\cdot 31 + 22\cdot 31^{2} + 4\cdot 31^{3} + 29\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 26 + \left(11 a + 27\right)\cdot 31 + \left(16 a + 5\right)\cdot 31^{2} + \left(3 a + 15\right)\cdot 31^{3} + \left(30 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 14 + \left(19 a + 26\right)\cdot 31 + \left(14 a + 26\right)\cdot 31^{2} + \left(27 a + 5\right)\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$72$ $5$ $(1,2,3,4,5)$ $0$
$72$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.