Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 a + 42 + \left(13 a + 20\right)\cdot 97 + \left(27 a + 61\right)\cdot 97^{2} + \left(84 a + 2\right)\cdot 97^{3} + \left(a + 80\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 33 a + 72 + \left(35 a + 60\right)\cdot 97 + \left(43 a + 52\right)\cdot 97^{2} + \left(61 a + 8\right)\cdot 97^{3} + \left(3 a + 63\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 64 a + 8 + \left(61 a + 63\right)\cdot 97 + \left(53 a + 60\right)\cdot 97^{2} + \left(35 a + 26\right)\cdot 97^{3} + \left(93 a + 5\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 62 a + 72 + \left(92 a + 1\right)\cdot 97 + \left(38 a + 96\right)\cdot 97^{2} + \left(96 a + 67\right)\cdot 97^{3} + \left(40 a + 51\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 79 a + 60 + \left(83 a + 15\right)\cdot 97 + \left(69 a + 75\right)\cdot 97^{2} + \left(12 a + 59\right)\cdot 97^{3} + \left(95 a + 94\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 35 a + 37 + \left(4 a + 32\right)\cdot 97 + \left(58 a + 42\right)\cdot 97^{2} + 28\cdot 97^{3} + \left(56 a + 93\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $10$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $2$ |
| $15$ | $2$ | $(1,2)$ | $-2$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $1$ |
| $40$ | $3$ | $(1,2,3)$ | $1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)$ | $0$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $-1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.