Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 139 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 139 }$: $ x^{2} + 138 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 136 a + 125 + \left(110 a + 62\right)\cdot 139 + \left(135 a + 120\right)\cdot 139^{2} + \left(78 a + 121\right)\cdot 139^{3} + \left(43 a + 107\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 a + 122 + \left(28 a + 37\right)\cdot 139 + \left(3 a + 6\right)\cdot 139^{2} + \left(60 a + 65\right)\cdot 139^{3} + \left(95 a + 72\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 93 a + 72 + \left(12 a + 137\right)\cdot 139 + \left(7 a + 84\right)\cdot 139^{2} + \left(109 a + 52\right)\cdot 139^{3} + \left(55 a + 46\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 a + 95 + \left(133 a + 74\right)\cdot 139 + \left(116 a + 1\right)\cdot 139^{2} + \left(2 a + 138\right)\cdot 139^{3} + \left(55 a + 2\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 117 a + 117 + \left(5 a + 46\right)\cdot 139 + \left(22 a + 124\right)\cdot 139^{2} + \left(136 a + 23\right)\cdot 139^{3} + \left(83 a + 55\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 46 a + 26 + \left(126 a + 57\right)\cdot 139 + \left(131 a + 79\right)\cdot 139^{2} + \left(29 a + 15\right)\cdot 139^{3} + \left(83 a + 132\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$10$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $15$ |
$2$ |
$(1,2)$ |
$2$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.