Properties

Label 10.2e24_23e8.30t88.2c1
Dimension 10
Group $A_6$
Conductor $ 2^{24} \cdot 23^{8}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$A_6$
Conductor:$1313840315232157696= 2^{24} \cdot 23^{8} $
Artin number field: Splitting field of $f= x^{6} - 13 x^{4} - 12 x^{3} + 25 x^{2} + 32 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 641 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 70\cdot 641 + 397\cdot 641^{2} + 444\cdot 641^{3} + 219\cdot 641^{4} +O\left(641^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 87 + 99\cdot 641 + 278\cdot 641^{2} + 628\cdot 641^{3} + 399\cdot 641^{4} +O\left(641^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 333 + 386\cdot 641 + 604\cdot 641^{2} + 407\cdot 641^{3} + 404\cdot 641^{4} +O\left(641^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 434 + 440\cdot 641 + 566\cdot 641^{2} + 485\cdot 641^{3} + 509\cdot 641^{4} +O\left(641^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 495 + 309\cdot 641 + 413\cdot 641^{2} + 522\cdot 641^{3} + 413\cdot 641^{4} +O\left(641^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 565 + 616\cdot 641 + 303\cdot 641^{2} + 74\cdot 641^{3} + 616\cdot 641^{4} +O\left(641^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$0$
$72$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.