Properties

Label 10.2e20_5e16.30t176.1
Dimension 10
Group $S_6$
Conductor $ 2^{20} \cdot 5^{16}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$160000000000000000= 2^{20} \cdot 5^{16} $
Artin number field: Splitting field of $f= x^{6} - 40 x - 50 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 46 + \left(15 a + 44\right)\cdot 47 + \left(26 a + 17\right)\cdot 47^{2} + \left(45 a + 45\right)\cdot 47^{3} + \left(39 a + 7\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 19 + \left(43 a + 7\right)\cdot 47 + \left(31 a + 22\right)\cdot 47^{2} + \left(21 a + 12\right)\cdot 47^{3} + \left(46 a + 41\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 a + 43 + \left(3 a + 34\right)\cdot 47 + \left(15 a + 42\right)\cdot 47^{2} + \left(25 a + 23\right)\cdot 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 + 14\cdot 47 + 10\cdot 47^{2} + 17\cdot 47^{3} + 5\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 44 + 4\cdot 47 + 40\cdot 47^{2} + 25\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 38 + \left(31 a + 33\right)\cdot 47 + \left(20 a + 7\right)\cdot 47^{2} + \left(a + 16\right)\cdot 47^{3} + \left(7 a + 42\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$15$ $2$ $(1,2)$ $2$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $1$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.