Properties

Label 10.2e18_4021e4.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 2^{18} \cdot 4021^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$68529287166815371264= 2^{18} \cdot 4021^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{3} - 3 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 43 + 33\cdot 47 + 33\cdot 47^{2} + 17\cdot 47^{3} + 40\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 40 + \left(33 a + 2\right)\cdot 47 + \left(27 a + 26\right)\cdot 47^{2} + \left(38 a + 6\right)\cdot 47^{3} + \left(36 a + 36\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 41 + \left(44 a + 22\right)\cdot 47 + \left(36 a + 45\right)\cdot 47^{2} + \left(41 a + 4\right)\cdot 47^{3} + \left(3 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 1 + \left(13 a + 18\right)\cdot 47 + \left(19 a + 1\right)\cdot 47^{2} + \left(8 a + 9\right)\cdot 47^{3} + \left(10 a + 24\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 28 + 2 a\cdot 47 + \left(10 a + 28\right)\cdot 47^{2} + \left(5 a + 4\right)\cdot 47^{3} + \left(43 a + 41\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 + 15\cdot 47 + 6\cdot 47^{2} + 4\cdot 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$-2$
$15$$2$$(1,2)$$2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.