Properties

Label 10.2e18_3e12_5e8.30t176.1
Dimension 10
Group $S_6$
Conductor $ 2^{18} \cdot 3^{12} \cdot 5^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$54419558400000000= 2^{18} \cdot 3^{12} \cdot 5^{8} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 8 x^{3} - 12 x^{2} + 12 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 54 + 10\cdot 137 + 39\cdot 137^{3} + 72\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 6\cdot 137 + 23\cdot 137^{2} + 35\cdot 137^{3} + 64\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 a + \left(21 a + 71\right)\cdot 137 + \left(78 a + 112\right)\cdot 137^{2} + \left(7 a + 35\right)\cdot 137^{3} + \left(34 a + 126\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 a + 74 + \left(115 a + 4\right)\cdot 137 + \left(58 a + 12\right)\cdot 137^{2} + \left(129 a + 3\right)\cdot 137^{3} + \left(102 a + 49\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 80 + 84\cdot 137 + 120\cdot 137^{2} + 115\cdot 137^{3} + 7\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 + 97\cdot 137 + 5\cdot 137^{2} + 45\cdot 137^{3} + 91\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$15$ $2$ $(1,2)(3,4)(5,6)$ $2$
$15$ $2$ $(1,2)$ $-2$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.