Properties

Label 10.2e12_3e14_13e6.30t88.1c1
Dimension 10
Group $A_6$
Conductor $ 2^{12} \cdot 3^{14} \cdot 13^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$A_6$
Conductor:$94562213134012416= 2^{12} \cdot 3^{14} \cdot 13^{6} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{3} - 6 x^{2} - 6 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 52 + 18\cdot 73 + 13\cdot 73^{2} + 29\cdot 73^{3} + 32\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 64 + \left(22 a + 13\right)\cdot 73 + \left(54 a + 41\right)\cdot 73^{2} + \left(5 a + 17\right)\cdot 73^{3} + \left(54 a + 68\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 44 + \left(50 a + 39\right)\cdot 73 + \left(18 a + 35\right)\cdot 73^{2} + \left(67 a + 53\right)\cdot 73^{3} + \left(18 a + 5\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 34 + \left(3 a + 49\right)\cdot 73 + \left(61 a + 62\right)\cdot 73^{2} + \left(28 a + 26\right)\cdot 73^{3} + \left(56 a + 25\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 + 50\cdot 73 + 42\cdot 73^{2} + 39\cdot 73^{3} + 67\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 a + 70 + \left(69 a + 46\right)\cdot 73 + \left(11 a + 23\right)\cdot 73^{2} + \left(44 a + 52\right)\cdot 73^{3} + \left(16 a + 19\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$0$
$72$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.