Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 90 a + 84 + \left(66 a + 4\right)\cdot 157 + \left(81 a + 121\right)\cdot 157^{2} + \left(156 a + 37\right)\cdot 157^{3} + \left(15 a + 98\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 124 + \left(3 a + 52\right)\cdot 157 + \left(154 a + 33\right)\cdot 157^{2} + \left(62 a + 31\right)\cdot 157^{3} + \left(140 a + 143\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 67 a + 63 + \left(90 a + 90\right)\cdot 157 + \left(75 a + 147\right)\cdot 157^{2} + 110\cdot 157^{3} + \left(141 a + 21\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 156 a + 129 + \left(153 a + 66\right)\cdot 157 + \left(2 a + 15\right)\cdot 157^{2} + \left(94 a + 35\right)\cdot 157^{3} + \left(16 a + 154\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 43 + 58\cdot 157 + 29\cdot 157^{2} + 157^{3} + 61\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 28 + 41\cdot 157 + 124\cdot 157^{2} + 97\cdot 157^{3} + 149\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$10$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $15$ |
$2$ |
$(1,2)$ |
$2$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.