Properties

Label 10.257339e6.30t176.1
Dimension 10
Group $S_6$
Conductor $ 257339^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$290424769899130848548472910509961= 257339^{6} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 4 x^{3} - 3 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 17 + \left(52 a + 1\right)\cdot 53 + \left(23 a + 35\right)\cdot 53^{2} + \left(39 a + 29\right)\cdot 53^{3} + \left(4 a + 11\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 23 + \left(35 a + 44\right)\cdot 53 + \left(28 a + 43\right)\cdot 53^{2} + \left(14 a + 5\right)\cdot 53^{3} + \left(30 a + 38\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 10 + 15\cdot 53 + \left(29 a + 25\right)\cdot 53^{2} + \left(13 a + 4\right)\cdot 53^{3} + \left(48 a + 44\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 + 46\cdot 53 + 48\cdot 53^{2} + 7\cdot 53^{3} + 43\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 + 33\cdot 53 + 41\cdot 53^{2} + 22\cdot 53^{3} + 36\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 a + 2 + \left(17 a + 18\right)\cdot 53 + \left(24 a + 17\right)\cdot 53^{2} + \left(38 a + 35\right)\cdot 53^{3} + \left(22 a + 38\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$15$ $2$ $(1,2)(3,4)(5,6)$ $2$
$15$ $2$ $(1,2)$ $-2$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.