Properties

Label 10.251e6_1033e6.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 251^{6} \cdot 1033^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$303839517691812344172778909966969= 251^{6} \cdot 1033^{6} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 3 x^{3} - 2 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 21\cdot 47 + 23\cdot 47^{3} + 17\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 36 + \left(39 a + 29\right)\cdot 47 + \left(24 a + 20\right)\cdot 47^{2} + \left(38 a + 2\right)\cdot 47^{3} + \left(44 a + 5\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 9\cdot 47 + 5\cdot 47^{2} + 19\cdot 47^{3} + 26\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 23 + \left(20 a + 25\right)\cdot 47 + \left(16 a + 35\right)\cdot 47^{2} + \left(24 a + 4\right)\cdot 47^{3} + \left(20 a + 33\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 31 + \left(7 a + 40\right)\cdot 47 + \left(22 a + 30\right)\cdot 47^{2} + \left(8 a + 7\right)\cdot 47^{3} + \left(2 a + 9\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 a + 33 + \left(26 a + 13\right)\cdot 47 + \left(30 a + 1\right)\cdot 47^{2} + \left(22 a + 37\right)\cdot 47^{3} + \left(26 a + 2\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$2$
$15$$2$$(1,2)$$-2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$-1$
$120$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.