Properties

Label 10.241e6_269e6.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 241^{6} \cdot 269^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$74236234586106371779243154521= 241^{6} \cdot 269^{6} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - 2 x^{3} - 2 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 487 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 44 + 330\cdot 487 + 215\cdot 487^{2} + 484\cdot 487^{3} + 312\cdot 487^{4} +O\left(487^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 227 + 96\cdot 487 + 73\cdot 487^{2} + 169\cdot 487^{3} + 142\cdot 487^{4} +O\left(487^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 315 + 455\cdot 487 + 213\cdot 487^{2} + 189\cdot 487^{3} + 249\cdot 487^{4} +O\left(487^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 407 + 252\cdot 487 + 468\cdot 487^{2} + 73\cdot 487^{3} + 62\cdot 487^{4} +O\left(487^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 475 + 88\cdot 487 + 355\cdot 487^{2} + 260\cdot 487^{3} + 259\cdot 487^{4} +O\left(487^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 483 + 236\cdot 487 + 134\cdot 487^{2} + 283\cdot 487^{3} + 434\cdot 487^{4} +O\left(487^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$2$
$15$$2$$(1,2)$$-2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$-1$
$120$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.