Basic invariants
| Dimension: | $10$ |
| Group: | $S_6$ |
| Conductor: | \(11850950346603023041\)\(\medspace = 23^{4} \cdot 2551^{4} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 6.2.58673.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | 30T164 |
| Parity: | even |
| Projective image: | $S_6$ |
| Projective field: | Galois closure of 6.2.58673.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$:
\( x^{2} + 49x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 19 a + 10 + \left(19 a + 45\right)\cdot 53 + \left(26 a + 21\right)\cdot 53^{2} + \left(12 a + 29\right)\cdot 53^{3} + \left(44 a + 28\right)\cdot 53^{4} +O(53^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 28 + 50\cdot 53 + 33\cdot 53^{2} + 15\cdot 53^{3} + 25\cdot 53^{4} +O(53^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 6 + 48\cdot 53 + 28\cdot 53^{2} + 12\cdot 53^{3} + 22\cdot 53^{4} +O(53^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 24 + 25\cdot 53 + 15\cdot 53^{2} + 14\cdot 53^{3} + 36\cdot 53^{4} +O(53^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 34 a + 33 + \left(33 a + 50\right)\cdot 53 + \left(26 a + 1\right)\cdot 53^{2} + 40 a\cdot 53^{3} + \left(8 a + 34\right)\cdot 53^{4} +O(53^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 5 + 45\cdot 53 + 3\cdot 53^{2} + 34\cdot 53^{3} + 12\cdot 53^{4} +O(53^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $10$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $-2$ |
| $15$ | $2$ | $(1,2)$ | $2$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $1$ |
| $40$ | $3$ | $(1,2,3)$ | $1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)$ | $0$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |