Properties

Label 10.118...041.30t164.a
Dimension $10$
Group $S_6$
Conductor $1.185\times 10^{19}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:\(11850950346603023041\)\(\medspace = 23^{4} \cdot 2551^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.58673.1
Galois orbit size: $1$
Smallest permutation container: 30T164
Parity: even
Projective image: $S_6$
Projective field: Galois closure of 6.2.58673.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: \( x^{2} + 49x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 19 a + 10 + \left(19 a + 45\right)\cdot 53 + \left(26 a + 21\right)\cdot 53^{2} + \left(12 a + 29\right)\cdot 53^{3} + \left(44 a + 28\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 28 + 50\cdot 53 + 33\cdot 53^{2} + 15\cdot 53^{3} + 25\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 + 48\cdot 53 + 28\cdot 53^{2} + 12\cdot 53^{3} + 22\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 24 + 25\cdot 53 + 15\cdot 53^{2} + 14\cdot 53^{3} + 36\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 34 a + 33 + \left(33 a + 50\right)\cdot 53 + \left(26 a + 1\right)\cdot 53^{2} + 40 a\cdot 53^{3} + \left(8 a + 34\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 5 + 45\cdot 53 + 3\cdot 53^{2} + 34\cdot 53^{3} + 12\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$15$ $2$ $(1,2)$ $2$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $1$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.