Properties

Label 10.13e4_16519e4.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 13^{4} \cdot 16519^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$2126710728473168932081= 13^{4} \cdot 16519^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 4 x^{3} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 167 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 167 }$: $ x^{2} + 166 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 68 a + 61 + \left(110 a + 91\right)\cdot 167 + \left(126 a + 83\right)\cdot 167^{2} + \left(106 a + 4\right)\cdot 167^{3} + \left(62 a + 10\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 130 a + 13 + \left(39 a + 13\right)\cdot 167 + \left(53 a + 134\right)\cdot 167^{2} + 134 a\cdot 167^{3} + \left(113 a + 40\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 99 a + 129 + \left(56 a + 133\right)\cdot 167 + \left(40 a + 99\right)\cdot 167^{2} + \left(60 a + 151\right)\cdot 167^{3} + \left(104 a + 132\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 a + 57 + \left(144 a + 35\right)\cdot 167 + \left(117 a + 31\right)\cdot 167^{2} + \left(5 a + 20\right)\cdot 167^{3} + \left(54 a + 125\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 125 a + 99 + \left(22 a + 137\right)\cdot 167 + \left(49 a + 4\right)\cdot 167^{2} + \left(161 a + 75\right)\cdot 167^{3} + \left(112 a + 6\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 143 + \left(127 a + 89\right)\cdot 167 + \left(113 a + 147\right)\cdot 167^{2} + \left(32 a + 81\right)\cdot 167^{3} + \left(53 a + 19\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$-2$
$15$$2$$(1,2)$$2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.