Properties

Label 10.11e4_29e4_373e4.30t176.1
Dimension 10
Group $S_6$
Conductor $ 11^{4} \cdot 29^{4} \cdot 373^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$200446307090208256561= 11^{4} \cdot 29^{4} \cdot 373^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{3} - 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 67 + 68\cdot 103 + 77\cdot 103^{2} + 99\cdot 103^{3} + 14\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 a + 64 + \left(83 a + 46\right)\cdot 103 + \left(84 a + 32\right)\cdot 103^{2} + \left(8 a + 39\right)\cdot 103^{3} + \left(18 a + 71\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 99 + 95\cdot 103 + 15\cdot 103^{2} + 6\cdot 103^{3} + 69\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 84 + \left(89 a + 17\right)\cdot 103 + \left(85 a + 76\right)\cdot 103^{2} + \left(81 a + 50\right)\cdot 103^{3} + \left(7 a + 73\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 a + 7 + \left(19 a + 84\right)\cdot 103 + \left(18 a + 33\right)\cdot 103^{2} + \left(94 a + 66\right)\cdot 103^{3} + \left(84 a + 80\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 95 a + 92 + \left(13 a + 98\right)\cdot 103 + \left(17 a + 72\right)\cdot 103^{2} + \left(21 a + 46\right)\cdot 103^{3} + \left(95 a + 102\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $10$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$15$ $2$ $(1,2)$ $2$
$45$ $2$ $(1,2)(3,4)$ $-2$
$40$ $3$ $(1,2,3)(4,5,6)$ $1$
$40$ $3$ $(1,2,3)$ $1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$
$90$ $4$ $(1,2,3,4)$ $0$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $1$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.