Properties

Label 10.107e6_17467e6.30t176.1c1
Dimension 10
Group $S_6$
Conductor $ 107^{6} \cdot 17467^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$10$
Group:$S_6$
Conductor:$42619915820710749326012466671803189681= 107^{6} \cdot 17467^{6} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - x^{3} + 8 x^{2} + x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T176
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 37 + 60\cdot 89 + 86\cdot 89^{2} + 25\cdot 89^{3} + 16\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 84 + 17\cdot 89 + 25\cdot 89^{2} + 15\cdot 89^{3} + 30\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 61 a + 81 + \left(46 a + 22\right)\cdot 89 + \left(35 a + 39\right)\cdot 89^{2} + \left(27 a + 28\right)\cdot 89^{3} + \left(a + 10\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 63 + \left(42 a + 21\right)\cdot 89 + \left(53 a + 63\right)\cdot 89^{2} + \left(61 a + 6\right)\cdot 89^{3} + \left(87 a + 81\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 70 + 48\cdot 89 + 73\cdot 89^{2} + 31\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 + 6\cdot 89 + 68\cdot 89^{2} + 69\cdot 89^{3} + 35\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$10$
$15$$2$$(1,2)(3,4)(5,6)$$2$
$15$$2$$(1,2)$$-2$
$45$$2$$(1,2)(3,4)$$-2$
$40$$3$$(1,2,3)(4,5,6)$$1$
$40$$3$$(1,2,3)$$1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$-1$
$120$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.