Properties

Label 1.99.6t1.b.a
Dimension $1$
Group $C_6$
Conductor $99$
Root number not computed
Indicator $0$

Related objects

Learn more about

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(99\)\(\medspace = 3^{2} \cdot 11 \)
Artin number field: Galois closure of 6.6.26198073.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{99}(65,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$$ x^{6} - 18 x^{4} - 8 x^{3} + 81 x^{2} + 72 x - 17 $.

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $

Roots:
$r_{ 1 }$ $=$ $ 7 a + \left(11 a + 5\right)\cdot 19 + \left(2 a + 6\right)\cdot 19^{2} + \left(9 a + 5\right)\cdot 19^{3} + \left(18 a + 6\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 7 + \left(7 a + 9\right)\cdot 19 + \left(16 a + 16\right)\cdot 19^{2} + \left(9 a + 11\right)\cdot 19^{3} + 15\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 13 + \left(4 a + 12\right)\cdot 19 + \left(13 a + 2\right)\cdot 19^{2} + 2 a\cdot 19^{3} + \left(2 a + 9\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 18 + \left(6 a + 15\right)\cdot 19 + \left(8 a + 18\right)\cdot 19^{2} + \left(6 a + 6\right)\cdot 19^{3} + \left(16 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 10 + \left(12 a + 11\right)\cdot 19 + \left(10 a + 1\right)\cdot 19^{2} + \left(12 a + 5\right)\cdot 19^{3} + \left(2 a + 4\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 9 + \left(14 a + 2\right)\cdot 19 + \left(5 a + 11\right)\cdot 19^{2} + \left(16 a + 8\right)\cdot 19^{3} + \left(16 a + 8\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6,2,5,3)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,6)(4,5)$$-1$
$1$$3$$(1,6,5)(2,3,4)$$\zeta_{3}$
$1$$3$$(1,5,6)(2,4,3)$$-\zeta_{3} - 1$
$1$$6$$(1,4,6,2,5,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,5,2,6,4)$$-\zeta_{3}$

The blue line marks the conjugacy class containing complex conjugation.