Properties

Label 1.99.6t1.a
Dimension $1$
Group $C_6$
Conductor $99$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(99\)\(\medspace = 3^{2} \cdot 11 \)
Artin number field: Galois closure of 6.0.8732691.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \(x^{2} + 16 x + 3\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( a + 14 + \left(3 a + 3\right)\cdot 17 + \left(a + 3\right)\cdot 17^{2} + \left(16 a + 3\right)\cdot 17^{3} + \left(3 a + 1\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 16 a + 14 + \left(13 a + 8\right)\cdot 17 + \left(15 a + 2\right)\cdot 17^{2} + 5\cdot 17^{3} + \left(13 a + 12\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 16 a + 15 + \left(13 a + 5\right)\cdot 17 + \left(15 a + 1\right)\cdot 17^{2} + 17^{3} + \left(13 a + 6\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( a + 13 + \left(3 a + 6\right)\cdot 17 + \left(a + 4\right)\cdot 17^{2} + \left(16 a + 7\right)\cdot 17^{3} + \left(3 a + 7\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 16 a + 8 + \left(13 a + 5\right)\cdot 17 + \left(15 a + 10\right)\cdot 17^{2} + 7\cdot 17^{3} + \left(13 a + 14\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( a + 7 + \left(3 a + 3\right)\cdot 17 + \left(a + 12\right)\cdot 17^{2} + \left(16 a + 9\right)\cdot 17^{3} + \left(3 a + 9\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,6,4)(2,3,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,6)(2,5,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,6,3,4,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,4,3,6,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.