Properties

Label 1.97.8t1.1c4
Dimension 1
Group $C_8$
Conductor $ 97 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$97 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 42 x^{6} + 59 x^{5} + 497 x^{4} - 719 x^{3} - 1792 x^{2} + 2295 x + 193 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{97}(50,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 30\cdot 61 + 11\cdot 61^{2} + 10\cdot 61^{3} + 56\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 8\cdot 61^{2} + 57\cdot 61^{3} + 26\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 3\cdot 61 + 34\cdot 61^{2} + 52\cdot 61^{3} + 10\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 4\cdot 61^{2} + 23\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 + 3\cdot 61 + 25\cdot 61^{2} + 38\cdot 61^{3} + 5\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 + 59\cdot 61 + 24\cdot 61^{2} + 14\cdot 61^{3} + 52\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 + 24\cdot 61 + 17\cdot 61^{2} + 13\cdot 61^{3} + 57\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 43 + 58\cdot 61^{2} + 34\cdot 61^{3} + 59\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,5,7,4,3,6)$
$(1,7)(2,4)(3,8)(5,6)$
$(1,8,7,3)(2,5,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,7)(2,4)(3,8)(5,6)$$-1$
$1$$4$$(1,8,7,3)(2,5,4,6)$$-\zeta_{8}^{2}$
$1$$4$$(1,3,7,8)(2,6,4,5)$$\zeta_{8}^{2}$
$1$$8$$(1,2,8,5,7,4,3,6)$$-\zeta_{8}^{3}$
$1$$8$$(1,5,3,2,7,6,8,4)$$-\zeta_{8}$
$1$$8$$(1,4,8,6,7,2,3,5)$$\zeta_{8}^{3}$
$1$$8$$(1,6,3,4,7,5,8,2)$$\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.