Basic invariants
Dimension: | $1$ |
Group: | $C_{10}$ |
Conductor: | \(93\)\(\medspace = 3 \cdot 31 \) |
Artin field: | Galois closure of 10.0.207252522098163.1 |
Galois orbit size: | $4$ |
Smallest permutation container: | $C_{10}$ |
Parity: | odd |
Dirichlet character: | \(\chi_{93}(2,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{10} - x^{9} + 13x^{8} - 30x^{7} + 164x^{6} - 255x^{5} + 448x^{4} - 99x^{3} + 106x^{2} - 5x + 25 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{5} + 4x + 11 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 9 a^{4} + 9 a^{3} + 4 a^{2} + 10 a + 10 + \left(10 a^{4} + 9 a^{3} + 5 a^{2} + 8 a\right)\cdot 13 + \left(10 a^{4} + 5 a^{3} + 8 a^{2} + 10 a + 2\right)\cdot 13^{2} + \left(4 a^{4} + 12 a^{3} + 9 a^{2} + 11 a + 3\right)\cdot 13^{3} + \left(2 a^{4} + 4 a^{3} + 7 a^{2} + 10 a + 11\right)\cdot 13^{4} + \left(11 a^{4} + 8 a^{3} + 11\right)\cdot 13^{5} +O(13^{6})\)
$r_{ 2 }$ |
$=$ |
\( 11 a^{4} + 4 a^{3} + 8 a^{2} + 12 a + 10 + \left(7 a^{4} + 11 a^{3} + 12 a^{2} + 9 a + 11\right)\cdot 13 + \left(6 a^{4} + 11 a^{3} + 12 a^{2} + 6 a + 6\right)\cdot 13^{2} + \left(4 a^{4} + 5 a + 8\right)\cdot 13^{3} + \left(4 a^{4} + 7 a^{3} + a^{2} + 7 a + 7\right)\cdot 13^{4} + \left(6 a^{4} + 8 a^{2} + 2 a + 2\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 3 }$ |
$=$ |
\( 11 a^{3} + 5 a^{2} + a + 2 + \left(a^{4} + 3 a^{3} + 12 a^{2} + 7 a + 6\right)\cdot 13 + \left(11 a^{4} + 3 a^{2} + 2 a + 5\right)\cdot 13^{2} + \left(10 a^{4} + 11 a^{3} + 5 a^{2} + 5 a + 9\right)\cdot 13^{3} + \left(11 a^{4} + 3 a^{3} + 4 a^{2} + 12 a + 7\right)\cdot 13^{4} + \left(7 a^{4} + 10 a^{3} + 5 a^{2} + 12 a + 6\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 4 }$ |
$=$ |
\( 5 a^{4} + 7 a^{3} + 2 a^{2} + 12 a + 5 + \left(10 a^{4} + 10 a^{3} + 9 a^{2} + 5 a + 2\right)\cdot 13 + \left(a^{4} + 6 a^{3} + a^{2} + 7 a + 12\right)\cdot 13^{2} + \left(12 a^{4} + a^{3} + 10 a^{2} + 10\right)\cdot 13^{3} + \left(3 a^{4} + 7 a^{3} + 4 a^{2} + 12 a + 5\right)\cdot 13^{4} + \left(8 a^{4} + 5 a^{2} + 10 a + 10\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 5 }$ |
$=$ |
\( a^{4} + a^{3} + 12 a^{2} + 4 a + 4 + \left(a^{4} + 11 a^{3} + 7 a^{2} + 6 a + 8\right)\cdot 13 + \left(9 a^{4} + 8 a^{3} + 3 a^{2} + 6 a + 9\right)\cdot 13^{2} + \left(5 a^{4} + 5 a^{3} + 7 a^{2} + 9 a + 9\right)\cdot 13^{3} + \left(11 a^{4} + 11 a^{3} + 8 a^{2} + 11 a + 1\right)\cdot 13^{4} + \left(5 a^{4} + 5 a^{3} + 5 a^{2} + 6 a + 1\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 6 }$ |
$=$ |
\( 4 a^{4} + 2 a^{3} + 8 a^{2} + 12 a + 7 + \left(7 a^{2} + 6 a + 6\right)\cdot 13 + \left(12 a^{4} + a^{3} + 3 a^{2} + 5 a + 8\right)\cdot 13^{2} + \left(5 a^{3} + 9 a^{2} + 12 a + 3\right)\cdot 13^{3} + \left(2 a^{4} + 2 a^{3} + 11 a^{2} + 8 a + 10\right)\cdot 13^{4} + \left(a^{4} + 12 a^{2} + 7 a + 5\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 7 }$ |
$=$ |
\( 7 a^{3} + 2 a^{2} + 3 a + 6 + \left(3 a^{4} + 2 a^{3} + a^{2} + 6 a + 1\right)\cdot 13 + \left(5 a^{4} + 5 a^{3} + 9 a^{2} + 5\right)\cdot 13^{2} + \left(4 a^{4} + 2 a^{3} + 9 a^{2} + 4 a\right)\cdot 13^{3} + \left(9 a^{4} + 12 a^{3} + 7 a^{2} + 11 a + 8\right)\cdot 13^{4} + \left(8 a^{3} + 7 a^{2} + 7 a + 10\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 8 }$ |
$=$ |
\( 2 a^{4} + 8 a^{3} + 6 a^{2} + 10 a + 2 + \left(8 a^{4} + 4 a^{3} + 10 a^{2} + 6 a + 10\right)\cdot 13 + \left(6 a^{4} + 9 a^{3} + 3 a + 1\right)\cdot 13^{2} + \left(7 a^{4} + 10 a^{3} + 5 a^{2} + 6 a + 5\right)\cdot 13^{3} + \left(11 a^{4} + a^{3} + 11 a^{2} + 3 a + 7\right)\cdot 13^{4} + \left(5 a^{4} + 4 a^{3} + 4 a^{2} + 2 a + 11\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 9 }$ |
$=$ |
\( 8 a^{4} + 10 a^{3} + 7 a^{2} + 4 a + 12 + \left(3 a^{4} + a^{3} + 4 a^{2} + 10 a + 11\right)\cdot 13 + \left(3 a^{4} + 12 a^{3} + 8 a^{2} + 12 a + 3\right)\cdot 13^{2} + \left(10 a^{4} + 8 a^{3} + 4 a^{2} + 8 a + 2\right)\cdot 13^{3} + \left(5 a^{4} + 7 a^{3} + 10 a^{2} + 7 a + 9\right)\cdot 13^{4} + \left(10 a^{4} + 6 a^{3} + a^{2} + 6 a + 1\right)\cdot 13^{5} +O(13^{6})\)
| $r_{ 10 }$ |
$=$ |
\( 12 a^{4} + 6 a^{3} + 11 a^{2} + 10 a + 8 + \left(5 a^{4} + 9 a^{3} + 6 a^{2} + 9 a + 5\right)\cdot 13 + \left(11 a^{4} + 3 a^{3} + 12 a^{2} + 8 a + 9\right)\cdot 13^{2} + \left(3 a^{4} + 6 a^{3} + 2 a^{2} + 11\right)\cdot 13^{3} + \left(2 a^{4} + 6 a^{3} + 10 a^{2} + 5 a + 8\right)\cdot 13^{4} + \left(7 a^{4} + 6 a^{3} + 12 a^{2} + 6 a + 2\right)\cdot 13^{5} +O(13^{6})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 10 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 10 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,5)(2,9)(3,7)(4,8)(6,10)$ | $-1$ |
$1$ | $5$ | $(1,3,6,9,4)(2,8,5,7,10)$ | $\zeta_{5}$ |
$1$ | $5$ | $(1,6,4,3,9)(2,5,10,8,7)$ | $\zeta_{5}^{2}$ |
$1$ | $5$ | $(1,9,3,4,6)(2,7,8,10,5)$ | $\zeta_{5}^{3}$ |
$1$ | $5$ | $(1,4,9,6,3)(2,10,7,5,8)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
$1$ | $10$ | $(1,2,3,8,6,5,9,7,4,10)$ | $-\zeta_{5}^{3}$ |
$1$ | $10$ | $(1,8,9,10,3,5,4,2,6,7)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ |
$1$ | $10$ | $(1,7,6,2,4,5,3,10,9,8)$ | $-\zeta_{5}$ |
$1$ | $10$ | $(1,10,4,7,9,5,6,8,3,2)$ | $-\zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.