Properties

Label 1.91.6t1.j
Dimension $1$
Group $C_6$
Conductor $91$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(91\)\(\medspace = 7 \cdot 13 \)
Artin number field: Galois closure of 6.6.5274997.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \(x^{2} + 38 x + 6\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 12 a + 40 + \left(29 a + 29\right)\cdot 41 + \left(40 a + 29\right)\cdot 41^{2} + 9\cdot 41^{3} + \left(37 a + 37\right)\cdot 41^{4} +O(41^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 12 a + 17 + \left(29 a + 33\right)\cdot 41 + \left(40 a + 11\right)\cdot 41^{2} + 25\cdot 41^{3} + \left(37 a + 15\right)\cdot 41^{4} +O(41^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 29 a + 28 + \left(11 a + 21\right)\cdot 41 + 14\cdot 41^{2} + \left(40 a + 4\right)\cdot 41^{3} + \left(3 a + 15\right)\cdot 41^{4} +O(41^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 29 a + 12 + \left(11 a + 27\right)\cdot 41 + 22\cdot 41^{2} + \left(40 a + 28\right)\cdot 41^{3} + \left(3 a + 2\right)\cdot 41^{4} +O(41^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 29 a + 35 + \left(11 a + 23\right)\cdot 41 + 40\cdot 41^{2} + \left(40 a + 12\right)\cdot 41^{3} + \left(3 a + 24\right)\cdot 41^{4} +O(41^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 12 a + 33 + \left(29 a + 27\right)\cdot 41 + \left(40 a + 3\right)\cdot 41^{2} + 41^{3} + \left(37 a + 28\right)\cdot 41^{4} +O(41^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,5,6,4)$
$(1,5)(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,2,6)(3,5,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,6,2)(3,4,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,3,2,5,6,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,4,6,5,2,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.