Basic invariants
Dimension: | $1$ |
Group: | $C_4$ |
Conductor: | \(91\)\(\medspace = 7 \cdot 13 \) |
Artin field: | Galois closure of 4.4.107653.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4$ |
Parity: | even |
Dirichlet character: | \(\chi_{91}(83,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} - x^{3} - 24x^{2} - 22x + 29 \)
|
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 4\cdot 29 + 18\cdot 29^{2} + 22\cdot 29^{3} + 23\cdot 29^{4} +O(29^{5})\)
$r_{ 2 }$ |
$=$ |
\( 10 + 5\cdot 29 + 11\cdot 29^{2} + 15\cdot 29^{3} + 16\cdot 29^{4} +O(29^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 21 + 16\cdot 29 + 21\cdot 29^{2} + 23\cdot 29^{3} + 22\cdot 29^{4} +O(29^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 28 + 2\cdot 29 + 7\cdot 29^{2} + 25\cdot 29^{3} + 23\cdot 29^{4} +O(29^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,2)(3,4)$ | $-1$ |
$1$ | $4$ | $(1,4,2,3)$ | $\zeta_{4}$ |
$1$ | $4$ | $(1,3,2,4)$ | $-\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.