Properties

Label 1.7_701.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 701 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$4907= 7 \cdot 701 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 530 x^{4} + 353 x^{3} + 92055 x^{2} - 30976 x - 5237401 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{4907}(3504,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 58 a + 30 + \left(11 a + 64\right)\cdot 71 + \left(55 a + 40\right)\cdot 71^{2} + \left(25 a + 21\right)\cdot 71^{3} + \left(22 a + 15\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 58 a + 53 + \left(11 a + 27\right)\cdot 71 + \left(55 a + 5\right)\cdot 71^{2} + \left(25 a + 28\right)\cdot 71^{3} + \left(22 a + 26\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 4 + \left(59 a + 30\right)\cdot 71 + \left(15 a + 68\right)\cdot 71^{2} + \left(45 a + 17\right)\cdot 71^{3} + \left(48 a + 34\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 27 + \left(59 a + 64\right)\cdot 71 + \left(15 a + 32\right)\cdot 71^{2} + \left(45 a + 24\right)\cdot 71^{3} + \left(48 a + 45\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 37 + \left(59 a + 31\right)\cdot 71 + \left(15 a + 46\right)\cdot 71^{2} + \left(45 a + 58\right)\cdot 71^{3} + \left(48 a + 19\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 63 + \left(11 a + 65\right)\cdot 71 + \left(55 a + 18\right)\cdot 71^{2} + \left(25 a + 62\right)\cdot 71^{3} + 22 a\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,2,6)(3,4,5)$$\zeta_{3}$
$1$$3$$(1,6,2)(3,5,4)$$-\zeta_{3} - 1$
$1$$6$$(1,4,6,3,2,5)$$-\zeta_{3}$
$1$$6$$(1,5,2,3,6,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.