Properties

Label 1.7_67.6t1.5
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 67 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$469= 7 \cdot 67 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 39 x^{4} + 51 x^{3} + 489 x^{2} - 851 x + 1297 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 28 + \left(42 a + 15\right)\cdot 59 + \left(3 a + 12\right)\cdot 59^{2} + \left(46 a + 13\right)\cdot 59^{3} + \left(13 a + 26\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 20 + \left(42 a + 7\right)\cdot 59 + \left(3 a + 40\right)\cdot 59^{2} + \left(46 a + 12\right)\cdot 59^{3} + \left(13 a + 4\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 a + 29 + \left(16 a + 56\right)\cdot 59 + \left(55 a + 32\right)\cdot 59^{2} + \left(12 a + 55\right)\cdot 59^{3} + \left(45 a + 52\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 a + 11 + \left(16 a + 45\right)\cdot 59 + \left(55 a + 25\right)\cdot 59^{2} + \left(12 a + 41\right)\cdot 59^{3} + \left(45 a + 44\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 a + 21 + \left(16 a + 48\right)\cdot 59 + \left(55 a + 1\right)\cdot 59^{2} + \left(12 a + 55\right)\cdot 59^{3} + \left(45 a + 30\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 10 + \left(42 a + 4\right)\cdot 59 + \left(3 a + 5\right)\cdot 59^{2} + \left(46 a + 58\right)\cdot 59^{3} + \left(13 a + 17\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)(3,4,5)$
$(1,3)(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,6,2)(3,4,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $3$ $(1,2,6)(3,5,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $6$ $(1,4,2,3,6,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,6,3,2,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.