Properties

Label 1.7_53.6t1.2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 53 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$371= 7 \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 92 x^{4} - 92 x^{3} + 2458 x^{2} - 2458 x + 17837 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 59 a + 5 + \left(57 a + 36\right)\cdot 71 + \left(22 a + 7\right)\cdot 71^{2} + \left(5 a + 29\right)\cdot 71^{3} + \left(40 a + 28\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 a + 19 + \left(56 a + 57\right)\cdot 71 + \left(28 a + 60\right)\cdot 71^{2} + \left(31 a + 61\right)\cdot 71^{3} + \left(29 a + 44\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 a + \left(14 a + 2\right)\cdot 71 + \left(42 a + 62\right)\cdot 71^{2} + \left(39 a + 24\right)\cdot 71^{3} + \left(41 a + 1\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 66 + \left(22 a + 62\right)\cdot 71 + \left(55 a + 34\right)\cdot 71^{2} + \left(48 a + 54\right)\cdot 71^{3} + \left(41 a + 35\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 68 a + 1 + \left(48 a + 33\right)\cdot 71 + \left(15 a + 52\right)\cdot 71^{2} + \left(22 a + 25\right)\cdot 71^{3} + \left(29 a + 70\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 52 + \left(13 a + 21\right)\cdot 71 + \left(48 a + 66\right)\cdot 71^{2} + \left(65 a + 16\right)\cdot 71^{3} + \left(30 a + 32\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5,6,3,4)$
$(1,6)(2,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-1$ $-1$
$1$ $3$ $(1,5,3)(2,6,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,5)(2,4,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,5,6,3,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,4,3,6,5,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.