Properties

Label 1.7_53.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 53 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$371= 7 \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 44 x^{4} + 29 x^{3} + 525 x^{2} - 196 x - 1561 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{371}(317,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 30 + \left(35 a + 19\right)\cdot 41 + \left(7 a + 35\right)\cdot 41^{2} + \left(18 a + 40\right)\cdot 41^{3} + \left(35 a + 38\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 37 + \left(35 a + 21\right)\cdot 41 + \left(7 a + 20\right)\cdot 41^{2} + \left(18 a + 8\right)\cdot 41^{3} + \left(35 a + 7\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 38 + \left(5 a + 31\right)\cdot 41 + \left(33 a + 8\right)\cdot 41^{2} + \left(22 a + 14\right)\cdot 41^{3} + \left(5 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 15 + \left(5 a + 35\right)\cdot 41 + \left(33 a + 31\right)\cdot 41^{2} + \left(22 a + 29\right)\cdot 41^{3} + \left(5 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 31 + \left(5 a + 29\right)\cdot 41 + \left(33 a + 23\right)\cdot 41^{2} + \left(22 a + 5\right)\cdot 41^{3} + \left(5 a + 4\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 14 + \left(35 a + 25\right)\cdot 41 + \left(7 a + 2\right)\cdot 41^{2} + \left(18 a + 24\right)\cdot 41^{3} + \left(35 a + 26\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)(3,5,4)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,3)(4,6)$$-1$
$1$$3$$(1,6,2)(3,5,4)$$\zeta_{3}$
$1$$3$$(1,2,6)(3,4,5)$$-\zeta_{3} - 1$
$1$$6$$(1,4,2,5,6,3)$$-\zeta_{3}$
$1$$6$$(1,3,6,5,2,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.