Properties

Label 1.7_503.6t1.1
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 503 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$3521= 7 \cdot 503 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 373 x^{4} - 249 x^{3} + 47507 x^{2} - 15625 x + 2064257 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 20 + \left(18 a + 14\right)\cdot 29 + \left(8 a + 15\right)\cdot 29^{2} + \left(21 a + 24\right)\cdot 29^{3} + \left(26 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 20 + \left(10 a + 25\right)\cdot 29 + \left(20 a + 13\right)\cdot 29^{2} + \left(7 a + 19\right)\cdot 29^{3} + \left(2 a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 2 + \left(10 a + 17\right)\cdot 29 + \left(20 a + 26\right)\cdot 29^{2} + \left(7 a + 4\right)\cdot 29^{3} + \left(2 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 6 + \left(18 a + 18\right)\cdot 29 + \left(8 a + 1\right)\cdot 29^{2} + \left(21 a + 23\right)\cdot 29^{3} + \left(26 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 16 + \left(10 a + 13\right)\cdot 29 + \left(20 a + 11\right)\cdot 29^{2} + \left(7 a + 6\right)\cdot 29^{3} + \left(2 a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 24 + \left(18 a + 26\right)\cdot 29 + \left(8 a + 17\right)\cdot 29^{2} + \left(21 a + 8\right)\cdot 29^{3} + \left(26 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,4,5,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-1$ $-1$
$1$ $3$ $(1,4,6)(2,5,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,6,4)(2,3,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,4,5,6,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,6,5,4,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.