Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ |
$=$ |
$ 2 a + \left(3 a + 12\right)\cdot 13 + \left(8 a + 12\right)\cdot 13^{2} + \left(6 a + 7\right)\cdot 13^{3} + \left(11 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
$r_{ 2 }$ |
$=$ |
$ 11 a + 2 + 9 a\cdot 13 + \left(4 a + 5\right)\cdot 13^{2} + \left(6 a + 6\right)\cdot 13^{3} + a\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
$r_{ 3 }$ |
$=$ |
$ 2 a + 3 + \left(3 a + 10\right)\cdot 13 + \left(8 a + 11\right)\cdot 13^{2} + \left(6 a + 1\right)\cdot 13^{3} + \left(11 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
$r_{ 4 }$ |
$=$ |
$ 11 a + 5 + \left(9 a + 11\right)\cdot 13 + \left(4 a + 3\right)\cdot 13^{2} + 6 a\cdot 13^{3} + \left(a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
$r_{ 5 }$ |
$=$ |
$ 2 a + 1 + \left(3 a + 2\right)\cdot 13 + 8 a\cdot 13^{2} + \left(6 a + 12\right)\cdot 13^{3} + \left(11 a + 10\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
$r_{ 6 }$ |
$=$ |
$ 11 a + 3 + \left(9 a + 3\right)\cdot 13 + \left(4 a + 5\right)\cdot 13^{2} + \left(6 a + 10\right)\cdot 13^{3} + \left(a + 2\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
Cycle notation |
$(1,2)(3,4)(5,6)$ |
$(1,5,3)(2,6,4)$ |
Character values on conjugacy classes
Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,2)(3,4)(5,6)$ | $-1$ |
$1$ | $3$ | $(1,5,3)(2,6,4)$ | $-\zeta_{3} - 1$ |
$1$ | $3$ | $(1,3,5)(2,4,6)$ | $\zeta_{3}$ |
$1$ | $6$ | $(1,6,3,2,5,4)$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,4,5,2,3,6)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.