Properties

Label 1.7_37.9t1.2c4
Dimension 1
Group $C_9$
Conductor $ 7 \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_9$
Conductor:$259= 7 \cdot 37 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 90 x^{7} + 11 x^{6} + 2730 x^{5} + 1226 x^{4} - 30339 x^{3} - 14830 x^{2} + 103200 x + 1849 $ over $\Q$
Size of Galois orbit: 6
Smallest containing permutation representation: $C_9$
Parity: Even
Corresponding Dirichlet character: \(\chi_{259}(144,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 10 a + 5 + \left(9 a^{2} + 9 a + 4\right)\cdot 11 + \left(2 a^{2} + 3 a + 7\right)\cdot 11^{2} + \left(a^{2} + 6 a + 8\right)\cdot 11^{3} + \left(a^{2} + 5 a + 4\right)\cdot 11^{4} + \left(5 a^{2} + 3 a + 5\right)\cdot 11^{5} + \left(a^{2} + 9 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 7 a + 1 + \left(8 a^{2} + 4 a\right)\cdot 11 + \left(9 a^{2} + 7 a + 9\right)\cdot 11^{2} + \left(7 a^{2} + 10 a + 9\right)\cdot 11^{3} + \left(10 a^{2} + 3 a + 1\right)\cdot 11^{4} + \left(9 a^{2} + 4 a + 6\right)\cdot 11^{5} + \left(4 a^{2} + 4 a + 1\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{2} + 5 a + 1 + \left(10 a^{2} + 2 a + 4\right)\cdot 11 + \left(a^{2} + 6 a + 10\right)\cdot 11^{2} + \left(8 a + 4\right)\cdot 11^{3} + \left(9 a^{2} + 3 a + 6\right)\cdot 11^{4} + \left(5 a^{2} + 10 a + 1\right)\cdot 11^{5} + \left(8 a^{2} + 3 a + 8\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 10 + a^{2}11 + \left(4 a^{2} + 8 a + 5\right)\cdot 11^{2} + \left(4 a^{2} + 6 a + 1\right)\cdot 11^{3} + \left(10 a^{2} + 3 a + 5\right)\cdot 11^{4} + \left(9 a^{2} + 7 a + 2\right)\cdot 11^{5} + \left(10 a^{2} + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 7 a + 7 + \left(9 a^{2} + 9 a + 1\right)\cdot 11 + \left(5 a^{2} + 8 a + 4\right)\cdot 11^{2} + \left(4 a^{2} + 6 a + 9\right)\cdot 11^{3} + \left(a^{2} + 3 a + 8\right)\cdot 11^{4} + \left(8 a^{2} + 4 a + 5\right)\cdot 11^{5} + \left(7 a^{2} + 5 a + 7\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 8 a + 8 + \left(a^{2} + 5 a + 8\right)\cdot 11 + \left(8 a^{2} + 6 a + 6\right)\cdot 11^{2} + \left(9 a^{2} + 4 a + 8\right)\cdot 11^{3} + \left(3 a + 10\right)\cdot 11^{4} + \left(2 a^{2} + 10 a + 2\right)\cdot 11^{5} + \left(6 a^{2} + 5 a + 3\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 5 + \left(10 a^{2} + a + 10\right)\cdot 11 + \left(5 a^{2} + 3 a\right)\cdot 11^{2} + \left(7 a^{2} + 3 a\right)\cdot 11^{3} + \left(4 a^{2} + 5 a + 8\right)\cdot 11^{4} + \left(9 a^{2} + 2 a + 2\right)\cdot 11^{5} + \left(10 a^{2} + 2 a\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + 5 a + 10 + \left(3 a^{2} + 2 a + 3\right)\cdot 11 + \left(2 a^{2} + 9 a + 10\right)\cdot 11^{2} + \left(5 a^{2} + 8 a + 2\right)\cdot 11^{3} + \left(8 a^{2} + a + 7\right)\cdot 11^{4} + \left(8 a^{2} + 3 a + 6\right)\cdot 11^{5} + \left(a^{2} + 7 a + 10\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 3 a^{2} + 3 a + 9 + \left(a^{2} + 7 a + 9\right)\cdot 11 + \left(3 a^{2} + a\right)\cdot 11^{2} + \left(3 a^{2} + 10 a + 9\right)\cdot 11^{3} + \left(8 a^{2} + a + 1\right)\cdot 11^{4} + \left(6 a^{2} + 9 a + 10\right)\cdot 11^{5} + \left(2 a^{2} + 4 a + 3\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,8)(2,6,4)(3,7,9)$
$(1,2,9,5,6,3,8,4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$1$
$1$$3$$(1,5,8)(2,6,4)(3,7,9)$$-\zeta_{9}^{3} - 1$
$1$$3$$(1,8,5)(2,4,6)(3,9,7)$$\zeta_{9}^{3}$
$1$$9$$(1,2,9,5,6,3,8,4,7)$$\zeta_{9}^{5}$
$1$$9$$(1,9,6,8,7,2,5,3,4)$$\zeta_{9}$
$1$$9$$(1,6,7,5,4,9,8,2,3)$$\zeta_{9}^{2}$
$1$$9$$(1,3,2,8,9,4,5,7,6)$$-\zeta_{9}^{4} - \zeta_{9}$
$1$$9$$(1,4,3,5,2,7,8,6,9)$$-\zeta_{9}^{5} - \zeta_{9}^{2}$
$1$$9$$(1,7,4,8,3,6,5,9,2)$$\zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.