Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 38 a + 19 + \left(37 a + 33\right)\cdot 41 + \left(19 a + 26\right)\cdot 41^{2} + \left(23 a + 1\right)\cdot 41^{3} + \left(26 a + 22\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 a + 33 + \left(3 a + 23\right)\cdot 41 + \left(21 a + 25\right)\cdot 41^{2} + \left(17 a + 36\right)\cdot 41^{3} + \left(14 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 38 a + 35 + \left(37 a + 27\right)\cdot 41 + \left(19 a + 18\right)\cdot 41^{2} + \left(23 a + 18\right)\cdot 41^{3} + \left(26 a + 34\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 a + 26 + \left(3 a + 21\right)\cdot 41 + \left(21 a + 40\right)\cdot 41^{2} + \left(17 a + 27\right)\cdot 41^{3} + \left(14 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + 10 + \left(3 a + 27\right)\cdot 41 + \left(21 a + 7\right)\cdot 41^{2} + \left(17 a + 11\right)\cdot 41^{3} + \left(14 a + 37\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 38 a + 1 + \left(37 a + 30\right)\cdot 41 + \left(19 a + 3\right)\cdot 41^{2} + \left(23 a + 27\right)\cdot 41^{3} + \left(26 a + 2\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5)(2,6)(3,4)$ |
| $(1,2,3,5,6,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,5)(2,6)(3,4)$ | $-1$ |
| $1$ | $3$ | $(1,3,6)(2,5,4)$ | $-\zeta_{3} - 1$ |
| $1$ | $3$ | $(1,6,3)(2,4,5)$ | $\zeta_{3}$ |
| $1$ | $6$ | $(1,2,3,5,6,4)$ | $-\zeta_{3}$ |
| $1$ | $6$ | $(1,4,6,5,3,2)$ | $\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.