Properties

Label 1.7_281.6t1.2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 281 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1967= 7 \cdot 281 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 491 x^{4} - 491 x^{3} + 69091 x^{2} - 69091 x + 2470091 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 36 a + 9 + \left(67 a + 51\right)\cdot 71 + \left(8 a + 50\right)\cdot 71^{2} + \left(14 a + 33\right)\cdot 71^{3} + \left(12 a + 53\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 10 + \left(3 a + 8\right)\cdot 71 + \left(62 a + 1\right)\cdot 71^{2} + \left(56 a + 53\right)\cdot 71^{3} + \left(58 a + 63\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 31 + \left(65 a + 15\right)\cdot 71 + \left(17 a + 16\right)\cdot 71^{2} + \left(66 a + 1\right)\cdot 71^{3} + \left(30 a + 68\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 26 + \left(5 a + 42\right)\cdot 71 + \left(53 a + 57\right)\cdot 71^{2} + \left(4 a + 44\right)\cdot 71^{3} + \left(40 a + 63\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 24 + \left(69 a + 36\right)\cdot 71 + \left(24 a + 53\right)\cdot 71^{2} + \left(22 a + 65\right)\cdot 71^{3} + \left(a + 62\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 43 + \left(a + 59\right)\cdot 71 + \left(46 a + 33\right)\cdot 71^{2} + \left(48 a + 14\right)\cdot 71^{3} + \left(69 a + 43\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,6,3)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,6,3)(2,5,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,6)(2,4,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,3,2,6,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,4,6,2,3,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.