Properties

Label 1.7_199.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 199 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1393= 7 \cdot 199 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 145 x^{4} - 97 x^{3} + 7455 x^{2} - 2401 x + 135149 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1393}(795,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 37 a + 16 + \left(35 a + 30\right)\cdot 41 + \left(26 a + 27\right)\cdot 41^{2} + \left(31 a + 9\right)\cdot 41^{3} + \left(3 a + 11\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 11 + \left(5 a + 21\right)\cdot 41 + \left(14 a + 16\right)\cdot 41^{2} + \left(9 a + 4\right)\cdot 41^{3} + 37 a\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 4 + \left(5 a + 19\right)\cdot 41 + \left(14 a + 31\right)\cdot 41^{2} + \left(9 a + 36\right)\cdot 41^{3} + \left(37 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 a + \left(35 a + 36\right)\cdot 41 + \left(26 a + 35\right)\cdot 41^{2} + \left(31 a + 33\right)\cdot 41^{3} + \left(3 a + 39\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 29 + \left(5 a + 24\right)\cdot 41 + \left(14 a + 39\right)\cdot 41^{2} + \left(9 a + 19\right)\cdot 41^{3} + \left(37 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 23 + \left(35 a + 32\right)\cdot 41 + \left(26 a + 12\right)\cdot 41^{2} + \left(31 a + 18\right)\cdot 41^{3} + \left(3 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4,3,6,5)$
$(1,3)(2,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,6)(4,5)$$-1$
$1$$3$$(1,4,6)(2,3,5)$$-\zeta_{3} - 1$
$1$$3$$(1,6,4)(2,5,3)$$\zeta_{3}$
$1$$6$$(1,2,4,3,6,5)$$-\zeta_{3}$
$1$$6$$(1,5,6,3,4,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.