Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 37 a + 16 + \left(35 a + 30\right)\cdot 41 + \left(26 a + 27\right)\cdot 41^{2} + \left(31 a + 9\right)\cdot 41^{3} + \left(3 a + 11\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a + 11 + \left(5 a + 21\right)\cdot 41 + \left(14 a + 16\right)\cdot 41^{2} + \left(9 a + 4\right)\cdot 41^{3} + 37 a\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a + 4 + \left(5 a + 19\right)\cdot 41 + \left(14 a + 31\right)\cdot 41^{2} + \left(9 a + 36\right)\cdot 41^{3} + \left(37 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 37 a + \left(35 a + 36\right)\cdot 41 + \left(26 a + 35\right)\cdot 41^{2} + \left(31 a + 33\right)\cdot 41^{3} + \left(3 a + 39\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 4 a + 29 + \left(5 a + 24\right)\cdot 41 + \left(14 a + 39\right)\cdot 41^{2} + \left(9 a + 19\right)\cdot 41^{3} + \left(37 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 37 a + 23 + \left(35 a + 32\right)\cdot 41 + \left(26 a + 12\right)\cdot 41^{2} + \left(31 a + 18\right)\cdot 41^{3} + \left(3 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2,4,3,6,5)$ |
| $(1,3)(2,6)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,3)(2,6)(4,5)$ | $-1$ |
| $1$ | $3$ | $(1,4,6)(2,3,5)$ | $\zeta_{3}$ |
| $1$ | $3$ | $(1,6,4)(2,5,3)$ | $-\zeta_{3} - 1$ |
| $1$ | $6$ | $(1,2,4,3,6,5)$ | $\zeta_{3} + 1$ |
| $1$ | $6$ | $(1,5,6,3,4,2)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.