Properties

Label 1.7_19.9t1.1
Dimension 1
Group $C_9$
Conductor $ 7 \cdot 19 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_9$
Conductor:$133= 7 \cdot 19 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 46 x^{7} + 7 x^{6} + 572 x^{5} + 460 x^{4} - 1483 x^{3} - 1757 x^{2} + 385 x + 721 $ over $\Q$
Size of Galois orbit: 6
Smallest containing permutation representation: $C_9$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{2} + a + 1 + \left(10 a^{2} + a + 7\right)\cdot 11 + \left(10 a^{2} + 2 a + 5\right)\cdot 11^{2} + \left(2 a + 7\right)\cdot 11^{3} + \left(5 a^{2} + 6\right)\cdot 11^{4} + 8 a\cdot 11^{5} + \left(3 a^{2} + 2 a + 10\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 7 a + 9 + \left(9 a^{2} + 5\right)\cdot 11 + \left(3 a + 3\right)\cdot 11^{2} + \left(7 a^{2} + 9 a + 9\right)\cdot 11^{3} + \left(2 a^{2} + 7 a + 4\right)\cdot 11^{4} + \left(7 a^{2} + 3 a + 5\right)\cdot 11^{5} + \left(5 a^{2} + 7 a + 5\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 7 a + 4 + \left(9 a^{2} + 9 a\right)\cdot 11 + \left(5 a^{2} + 8 a + 7\right)\cdot 11^{2} + \left(7 a^{2} + 5 a + 7\right)\cdot 11^{3} + \left(3 a^{2} + 7 a + 3\right)\cdot 11^{4} + \left(8 a^{2} + 3 a + 4\right)\cdot 11^{5} + \left(8 a^{2} + 10 a\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 4 a + 2 + \left(6 a + 7\right)\cdot 11 + \left(8 a^{2} + 5 a + 2\right)\cdot 11^{2} + \left(4 a^{2} + 4 a\right)\cdot 11^{3} + \left(3 a^{2} + 6 a + 7\right)\cdot 11^{4} + \left(4 a^{2} + 10 a + 2\right)\cdot 11^{5} + \left(10 a^{2} + 7 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 2 a + 7 + \left(9 a + 4\right)\cdot 11 + \left(a^{2} + a + 3\right)\cdot 11^{2} + \left(8 a^{2} + 4 a + 2\right)\cdot 11^{3} + \left(8 a^{2} + 4 a + 4\right)\cdot 11^{4} + \left(5 a^{2} + 10 a\right)\cdot 11^{5} + 3\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 8 a + 8 + \left(10 a^{2} + 7 a + 8\right)\cdot 11^{2} + \left(a^{2} + 4 a + 8\right)\cdot 11^{3} + \left(8 a^{2} + 6 a + 10\right)\cdot 11^{4} + \left(4 a^{2} + 3 a + 9\right)\cdot 11^{5} + \left(7 a^{2} + 7 a + 4\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 7 a + 7 + \left(6 a^{2} + 4\right)\cdot 11 + \left(a^{2} + 10 a + 4\right)\cdot 11^{2} + \left(7 a^{2} + 4 a + 9\right)\cdot 11^{3} + \left(10 a^{2} + 10 a\right)\cdot 11^{4} + \left(4 a^{2} + a + 6\right)\cdot 11^{5} + \left(9 a^{2} + 3 a + 10\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 5 a^{2} + 2 + \left(a^{2} + 6 a + 1\right)\cdot 11 + \left(8 a^{2} + 7 a + 10\right)\cdot 11^{2} + \left(9 a^{2} + 6\right)\cdot 11^{3} + \left(3 a^{2} + 8 a + 7\right)\cdot 11^{4} + \left(9 a^{2} + 7 a + 5\right)\cdot 11^{5} + \left(2 a^{2} + 3 a + 3\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 4 a^{2} + 8 a + 5 + \left(6 a^{2} + 9 a + 1\right)\cdot 11 + \left(8 a^{2} + 8 a + 10\right)\cdot 11^{2} + \left(7 a^{2} + 7 a + 2\right)\cdot 11^{3} + \left(8 a^{2} + 3 a + 9\right)\cdot 11^{4} + \left(9 a^{2} + 5 a + 8\right)\cdot 11^{5} + \left(6 a^{2} + 10\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2,5,8,7,6,4,9)$
$(1,6,5)(2,9,7)(3,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$ $c4$ $c5$ $c6$
$1$ $1$ $()$ $1$ $1$ $1$ $1$ $1$ $1$
$1$ $3$ $(1,5,6)(2,7,9)(3,8,4)$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$
$1$ $3$ $(1,6,5)(2,9,7)(3,4,8)$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$
$1$ $9$ $(1,3,2,5,8,7,6,4,9)$ $\zeta_{9}$ $\zeta_{9}^{2}$ $\zeta_{9}^{4}$ $\zeta_{9}^{5}$ $-\zeta_{9}^{4} - \zeta_{9}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$
$1$ $9$ $(1,2,8,6,9,3,5,7,4)$ $\zeta_{9}^{2}$ $\zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $\zeta_{9}$ $\zeta_{9}^{5}$ $-\zeta_{9}^{4} - \zeta_{9}$
$1$ $9$ $(1,8,9,5,4,2,6,3,7)$ $\zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $-\zeta_{9}^{4} - \zeta_{9}$ $\zeta_{9}^{2}$ $\zeta_{9}$ $\zeta_{9}^{5}$
$1$ $9$ $(1,7,3,6,2,4,5,9,8)$ $\zeta_{9}^{5}$ $\zeta_{9}$ $\zeta_{9}^{2}$ $-\zeta_{9}^{4} - \zeta_{9}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $\zeta_{9}^{4}$
$1$ $9$ $(1,4,7,5,3,9,6,8,2)$ $-\zeta_{9}^{4} - \zeta_{9}$ $\zeta_{9}^{5}$ $\zeta_{9}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $\zeta_{9}^{4}$ $\zeta_{9}^{2}$
$1$ $9$ $(1,9,4,6,7,8,5,2,3)$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $-\zeta_{9}^{4} - \zeta_{9}$ $\zeta_{9}^{5}$ $\zeta_{9}^{4}$ $\zeta_{9}^{2}$ $\zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.