Properties

Label 1.7_181.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 181 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1267= 7 \cdot 181 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 140 x^{4} + 93 x^{3} + 6125 x^{2} - 2116 x - 83161 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{1267}(723,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 9 + \left(a + 2\right)\cdot 41 + \left(29 a + 36\right)\cdot 41^{2} + \left(34 a + 9\right)\cdot 41^{3} + \left(15 a + 23\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 32 + \left(a + 39\right)\cdot 41 + \left(29 a + 12\right)\cdot 41^{2} + \left(34 a + 35\right)\cdot 41^{3} + \left(15 a + 3\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 25 + \left(a + 37\right)\cdot 41 + \left(29 a + 27\right)\cdot 41^{2} + \left(34 a + 26\right)\cdot 41^{3} + \left(15 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 2 + \left(39 a + 14\right)\cdot 41 + \left(11 a + 16\right)\cdot 41^{2} + \left(6 a + 28\right)\cdot 41^{3} + \left(25 a + 16\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 36 + \left(39 a + 11\right)\cdot 41 + \left(11 a + 31\right)\cdot 41^{2} + \left(6 a + 19\right)\cdot 41^{3} + \left(25 a + 7\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 20 + \left(39 a + 17\right)\cdot 41 + \left(11 a + 39\right)\cdot 41^{2} + \left(6 a + 2\right)\cdot 41^{3} + \left(25 a + 36\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,4)(3,5)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,6)(2,4)(3,5)$$-1$
$1$$3$$(1,3,2)(4,6,5)$$-\zeta_{3} - 1$
$1$$3$$(1,2,3)(4,5,6)$$\zeta_{3}$
$1$$6$$(1,5,2,6,3,4)$$\zeta_{3} + 1$
$1$$6$$(1,4,3,6,2,5)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.