Properties

Label 1.7_17.8t1.1c4
Dimension 1
Group $C_8$
Conductor $ 7 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$119= 7 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 27 x^{6} - 28 x^{5} + 151 x^{4} - 350 x^{3} + 500 x^{2} - 846 x + 1157 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{119}(111,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 46\cdot 47 + 8\cdot 47^{2} + 15\cdot 47^{3} + 13\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 40\cdot 47 + 29\cdot 47^{2} + 25\cdot 47^{3} + 41\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 43\cdot 47 + 3\cdot 47^{2} + 23\cdot 47^{3} + 44\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 39\cdot 47 + 4\cdot 47^{2} + 34\cdot 47^{3} + 32\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 + 7\cdot 47 + 6\cdot 47^{2} + 22\cdot 47^{3} + 20\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 + 16\cdot 47 + 15\cdot 47^{2} + 35\cdot 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 37 + 34\cdot 47 + 27\cdot 47^{2} + 10\cdot 47^{3} + 15\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 38 + 6\cdot 47 + 44\cdot 47^{2} + 21\cdot 47^{3} + 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,2)(3,5,8,7)$
$(1,3,2,7,4,8,6,5)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,6)(3,8)(5,7)$$-1$
$1$$4$$(1,2,4,6)(3,7,8,5)$$-\zeta_{8}^{2}$
$1$$4$$(1,6,4,2)(3,5,8,7)$$\zeta_{8}^{2}$
$1$$8$$(1,3,2,7,4,8,6,5)$$-\zeta_{8}^{3}$
$1$$8$$(1,7,6,3,4,5,2,8)$$-\zeta_{8}$
$1$$8$$(1,8,2,5,4,3,6,7)$$\zeta_{8}^{3}$
$1$$8$$(1,5,6,8,4,7,2,3)$$\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.