Properties

Label 1.1169.6t1.b.a
Dimension $1$
Group $C_6$
Conductor $1169$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(1169\)\(\medspace = 7 \cdot 167 \)
Artin field: Galois closure of 6.0.11182568663.3
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{1169}(333,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + 121x^{4} - 81x^{3} + 5255x^{2} - 1681x + 81269 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 10 a + 12 + \left(11 a + 9\right)\cdot 13 + \left(8 a + 2\right)\cdot 13^{2} + \left(11 a + 6\right)\cdot 13^{3} + \left(7 a + 3\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a + 9 + \left(11 a + 11\right)\cdot 13 + \left(8 a + 3\right)\cdot 13^{2} + \left(11 a + 12\right)\cdot 13^{3} + \left(7 a + 12\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 7 + \left(a + 3\right)\cdot 13 + \left(4 a + 1\right)\cdot 13^{2} + \left(a + 6\right)\cdot 13^{3} + \left(5 a + 11\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 a + 10 + \left(11 a + 1\right)\cdot 13 + \left(8 a + 4\right)\cdot 13^{2} + \left(11 a + 3\right)\cdot 13^{3} + \left(7 a + 2\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 9 + \left(a + 11\right)\cdot 13 + \left(4 a + 12\right)\cdot 13^{2} + \left(a + 8\right)\cdot 13^{3} + \left(5 a + 12\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a + 6 + a\cdot 13 + \left(4 a + 1\right)\cdot 13^{2} + \left(a + 2\right)\cdot 13^{3} + \left(5 a + 9\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,4)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,2,4)(3,5,6)$$\zeta_{3}$
$1$$3$$(1,4,2)(3,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,4,5,2,3)$$-\zeta_{3}$
$1$$6$$(1,3,2,5,4,6)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.