Properties

Label 1.7_13_41.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 13 \cdot 41 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$3731= 7 \cdot 13 \cdot 41 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 404 x^{4} + 269 x^{3} + 53205 x^{2} - 17956 x - 2282281 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{3731}(2664,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 14 + \left(21 a + 4\right)\cdot 29 + \left(9 a + 15\right)\cdot 29^{2} + \left(28 a + 20\right)\cdot 29^{3} + \left(28 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 28 + 21 a\cdot 29 + 9 a\cdot 29^{2} + \left(28 a + 22\right)\cdot 29^{3} + \left(28 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 8 + \left(7 a + 27\right)\cdot 29 + \left(19 a + 26\right)\cdot 29^{2} + 8\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 3 + \left(21 a + 13\right)\cdot 29 + \left(9 a + 2\right)\cdot 29^{2} + \left(28 a + 6\right)\cdot 29^{3} + \left(28 a + 16\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 23 + \left(7 a + 1\right)\cdot 29 + \left(19 a + 13\right)\cdot 29^{2} + 7\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 12 + \left(7 a + 10\right)\cdot 29 + 19 a\cdot 29^{2} + 22\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,3)(4,6)$$-1$
$1$$3$$(1,4,2)(3,5,6)$$-\zeta_{3} - 1$
$1$$3$$(1,2,4)(3,6,5)$$\zeta_{3}$
$1$$6$$(1,6,2,5,4,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,4,5,2,6)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.