Properties

Label 1.7_13_29.6t1.1
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 13 \cdot 29 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2639= 7 \cdot 13 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 287 x^{4} + 191 x^{3} + 26607 x^{2} - 9025 x - 795523 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 13 + \left(26 a + 20\right)\cdot 43 + \left(22 a + 30\right)\cdot 43^{2} + \left(9 a + 31\right)\cdot 43^{3} + \left(20 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 9 + \left(26 a + 41\right)\cdot 43 + \left(22 a + 17\right)\cdot 43^{2} + \left(9 a + 1\right)\cdot 43^{3} + 20 a\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 15 + \left(16 a + 39\right)\cdot 43 + \left(20 a + 17\right)\cdot 43^{2} + \left(33 a + 16\right)\cdot 43^{3} + 22 a\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 2 + \left(26 a + 26\right)\cdot 43 + \left(22 a + 21\right)\cdot 43^{2} + \left(9 a + 29\right)\cdot 43^{3} + \left(20 a + 32\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 22 + \left(16 a + 11\right)\cdot 43 + \left(20 a + 14\right)\cdot 43^{2} + \left(33 a + 31\right)\cdot 43^{3} + \left(22 a + 10\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 26 + \left(16 a + 33\right)\cdot 43 + \left(20 a + 26\right)\cdot 43^{2} + \left(33 a + 18\right)\cdot 43^{3} + \left(22 a + 26\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,4,6,2,3)$
$(1,6)(2,5)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-1$ $-1$
$1$ $3$ $(1,4,2)(3,5,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,2,4)(3,6,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,4,6,2,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,2,6,4,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.