Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 a + 13 + \left(8 a + 29\right)\cdot 43 + \left(36 a + 14\right)\cdot 43^{2} + \left(9 a + 38\right)\cdot 43^{3} + \left(25 a + 34\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 a + 9 + \left(8 a + 7\right)\cdot 43 + \left(36 a + 2\right)\cdot 43^{2} + \left(9 a + 8\right)\cdot 43^{3} + \left(25 a + 19\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 30 a + 15 + \left(34 a + 30\right)\cdot 43 + \left(6 a + 33\right)\cdot 43^{2} + \left(33 a + 9\right)\cdot 43^{3} + \left(17 a + 24\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 13 a + 2 + \left(8 a + 35\right)\cdot 43 + \left(36 a + 5\right)\cdot 43^{2} + \left(9 a + 36\right)\cdot 43^{3} + \left(25 a + 8\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 30 a + 22 + \left(34 a + 2\right)\cdot 43 + \left(6 a + 30\right)\cdot 43^{2} + \left(33 a + 24\right)\cdot 43^{3} + \left(17 a + 34\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 30 a + 26 + \left(34 a + 24\right)\cdot 43 + \left(6 a + 42\right)\cdot 43^{2} + \left(33 a + 11\right)\cdot 43^{3} + \left(17 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5,4,6,2,3)$ |
| $(1,6)(2,5)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-1$ |
| $1$ | $3$ | $(1,4,2)(3,5,6)$ | $-\zeta_{3} - 1$ |
| $1$ | $3$ | $(1,2,4)(3,6,5)$ | $\zeta_{3}$ |
| $1$ | $6$ | $(1,5,4,6,2,3)$ | $-\zeta_{3}$ |
| $1$ | $6$ | $(1,3,2,6,4,5)$ | $\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.