Properties

Label 1.7_139.3t1.2
Dimension 1
Group $C_3$
Conductor $ 7 \cdot 139 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_3$
Conductor:$973= 7 \cdot 139 $
Artin number field: Splitting field of $f= x^{3} - x^{2} - 324 x + 1009 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 5 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 4\cdot 5 + 2\cdot 5^{2} + 4\cdot 5^{3} + 2\cdot 5^{5} + 3\cdot 5^{7} +O\left(5^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 2 + 3\cdot 5 + 5^{3} + 2\cdot 5^{4} + 4\cdot 5^{5} + 2\cdot 5^{6} + 4\cdot 5^{7} +O\left(5^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 3 + 2\cdot 5 + 5^{2} + 4\cdot 5^{3} + 5^{4} + 3\cdot 5^{5} + 5^{6} + 2\cdot 5^{7} +O\left(5^{ 8 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $3$ $(1,2,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,2)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.